6,296 research outputs found

    Event-triggered robust control for multi-player nonzero-sum games with input constraints and mismatched uncertainties

    Get PDF
    In this article, an event-triggered robust control (ETRC) method is investigated for multi-player nonzero-sum games of continuous-time input constrained nonlinear systems with mismatched uncertainties. By constructing an auxiliary system and designing an appropriate value function, the robust control problem of input constrained nonlinear systems is transformed into an optimal regulation problem. Then, a critic neural network (NN) is adopted to approximate the value function of each player for solving the event-triggered coupled Hamilton-Jacobi equation and obtaining control laws. Based on a designed event-triggering condition, control laws are updated when events occur only. Thus, both computational burden and communication bandwidth are reduced. We prove that the weight approximation errors of critic NNs and the closed-loop uncertain multi-player system states are all uniformly ultimately bounded thanks to the Lyapunov's direct method. Finally, two examples are provided to demonstrate the effectiveness of the developed ETRC method

    Leakage current and relaxation characteristics of highly (111)-oriented lead calcium titanate thin films

    Get PDF
    Author name used in this publication: X. G. TangAuthor name used in this publication: J. WangAuthor name used in this publication: H. L. W. Chan2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Supramolecular gating of guest release from cucurbit[7]uril using de novo design

    Get PDF
    Herein we computationally explore the modulation of the release kinetics of an encapsulated guest molecule from the cucurbit[7]uril (CB7) cavity by ligands binding to the host portal. We uncovered a correlation between the ligand-binding affinity with CB7 and the guest residence time, allowing us to rapidly predict the release kinetics through straightforward energy minimization calculations. These high-throughput predictions in turn enable a Monte-Carlo Tree Search (MCTS) to de novo design a series of cap-shaped ligand molecules with large binding affinities and boosting guest residence times by up to 7 orders of magnitude. Notably, halogenated aromatic compounds emerge as top-ranking ligands. Detailed modeling suggests the presence of halogen-bonding between the ligands and the CB7 portal. Meanwhile, the binding of top-ranked ligands is supported by 1H NMR and 2D DOSY-NMR. Our findings open up possibilities in gating of molecular transport through a nanoscale cavity with potential applications in nanopore technology and controlled drug release

    Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory.</p> <p>Results</p> <p>We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other.</p> <p>Conclusions</p> <p>Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses.</p

    Epstein-Barr virus encoded microRNA BART7 regulates radiation sensitivity of nasopharyngeal carcinoma

    Get PDF
    published_or_final_versio

    Comparing the value of bioproducts from different stages of anaerobic membrane bioreactors

    Full text link
    Ā© 2016 Elsevier Ltd The anaerobic digestion process in anaerobic membrane bioreactors is an effective way for waste management, energy sustainability and pollution control in the environment. This digestion process basically involves the production of volatile fatty acids and biohydrogen as intermediate products and methane as a final product. This paper compares the value of bioproducts from different stages of anaerobic membrane bioreactors through a thorough assessment. The value was assessed in terms of technical feasibility, economic assessment, environmental impact and impact on society. Even though the current research objective is more inclined to optimize the production of methane, the intermediate products could also be considered as economically attractive and environment friendly options. Hence, this is the first review study to correlate the idea into an anaerobic membrane bioreactor which is expected to guide future research pathways regarding anaerobic process and its bioproducts

    A human mobility dataset collected via LBSLab

    Get PDF
    Location-Based Services (LBS) have been prosperous owing to technological advancements of smart devices. Analyzing location-based user-generated data is a helpful way to under-stand human mobility patterns, further fueling applications such as recommender systems and urban computing. This dataset documents user activities of location-based services through LBSLab, a smartphone-based system implemented as a mini-program in the WeChat app. The dataset contains ac-tivity data of multiple types including logins, profile view-ing, weather checking, and check-ins with location informa-tion (latitude and longitude), POI and mood indicated, col-lected from 467 users over a period of 11 days. We also present some temporal and spatial data analysis and believe the reuse of the data will allow researchers to better under-stand user behaviors of LBS, human mobility, and also tem-poral and spatial characteristics of people's moods. (c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY licensePeer reviewe

    Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene

    Full text link
    Ā© 2014 American Chemical Society. Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene

    Positive selection on hemagglutinin and neuraminidase genes of H1N1 influenza viruses

    Get PDF
    BACKGROUND: Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. RESULTS: Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. CONCLUSIONS: Most of these positively and/or differentially selected sites were situated in the B-cell and/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains

    Creation and suppression of point defects through a kick-out substitution process of Fe in InP

    Get PDF
    Indium antisite defect In P-related photoluminescence has been observed in Fe-diffused semi-insulating (SI) InP. Compared to annealed undoped or Fe-predoped SI InP, there are fewer defects in SI InP obtained by long-duration, high-temperature Fe diffusion. The suppression of the formation of point defects in Fe-diffused SI InP can be explained in terms of the complete occupation by Fe at indium vacancy. The In P defect is enhanced by the indium interstitial that is caused by the kick out of In and the substitution at the indium site of Fe in the diffusion process. Through these Fe-diffusion results, the nature of the defects in annealed undoped SI InP is better understood. Ā© 2002 American Institute of Physics.published_or_final_versio
    • ā€¦
    corecore